Scopus

文献数

Bouarissa, N.^a, Algarni, H.^{b c}, Al-Hagan, O.A.^b, Khan, M.A.^b, Alhuwaymel, T.F.^d **Optical properties and exciton binding energy and related parameters of CdTe: Pressure-induced effects** (2018) *Optik*, 170, pp. 37-42.

DOI: 10.1016/j.ijleo.2018.05.069

^a Laboratory of Materials Physics and Its Applications, University of M'sila, M'sila, Algeria

^b Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

^c Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

^d National Centre for Nanotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia

抄録 (Abstract)

The present paper reports on the hydrostatic pressure dependence of the direct and indirect energy band-gaps, refractive index, static and high-frequency dielectric constants, exciton banding energy and exciton Bohr radius for CdTe in the zinc-blende structure. The applied pressure is taken in the range 0–30 kbar. The calculations are performed using a pseudopotential approach. At zero pressure, our results show a good accord with experiment for most studied optical properties. Nevertheless, for exciton binding energy and Bohr radius the use of Adachi's expression [S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors, Wiley, Chichester, 2005] has given poor results as compared to experiment. In this respect, a modified Adachi's expression formula have been proposed and found to give meaningful accord with experiment. Upon compression up to 30 kbar, the material of interest is found to remain a direct (Γ- Γ) band-gap semiconductor. All optical features being studied here have shown a monotonic behavior under compression. The present study can be useful for infrared applications. © 2018 Elsevier GmbH

索引キーワード

Cadmium telluride, Energy gap, Excitons, Hydrostatic pressure, II-VI semiconductors, Infrared radiation, Optical properties, Pressure, Refractive index, Semiconductor quantum wells, Zinc sulfide; Band-gap semiconductors, CdTe, Exciton-binding energy, High-frequency dielectrics, Infrared applications, Pressure induced effects, Pseudopotential approach, Zinc-blende structures; Binding energy

連絡先住所

Bouarissa N.; Laboratory of Materials Physics and Its Applications, University of M'silaAlgeria; E-mail: n_bouarissa@yahoo.fr

出版社: Elsevier GmbH

ISSN: 00304026 本文言語: English 出版物名の省略形: Optik 2-s2.0-85047598322 文献タイプ: Article 情報源: Scopus

ELSEVIER

Copyright © 2018 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

RELX Group[™]