

W. K. Hung, M. Y. Chern, and Y. F. Chen

Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China

Z. L. Yang and Y. S. Huang

Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan, Republic of China

Received 12 June 2000; published in the issue dated 15 November 2000

The optical properties of GaAs_{1-x}N_x with x up to 2.5% grown by metalorganic chemical vapor deposition on GaAs(001) substrates are reported. Fundamental band gaps are obtained by photoreflectance measurements. Room-temperature pseudodielectric functions obtained by spectroscopic ellipsometry in the range from 2.7 to 5.2 eV are modeled with a three-phase structure that accounts for the GaAs_{1-x}N_x layer, native oxide, and ambient. We employ **Adachi**'s critical-point composite model for the parametrization of GaAs_{1-x}N_x, and the compositional dependence of critical-point energies is obtained. While the energy of E_0 decreases with x, those of E_1 and $E_1+\Delta_1$ increase with x. This fact, somewhat anomalous compared with conventional III-V alloys, indicates that the lowest-lying conduction bands along $\langle 111 \rangle$ directions may be perturbed by the incorporated nitrogen.

© 2000 The American Physical Society

URL: http://link.aps.org/doi/10.1103/PhysRevB.62.13028 DOI: 10.1103/PhysRevB.62.13028 PACS: 78.66.Fd, 71.20.Nr

< Previous Article | Next Article >

Read the latest from *Physics* : Viewpoint: The Breaking of Brittle Materials Viewpoint: Toward Fractional Quantum Hall Physics with Cold Atoms Focus: Windshield Cracks Hold Secrets of Impact

About | Terms and Conditions | Subscriptions | Search | Help

Use of the American Physical Society websites and journals implies that the user has read and agrees to our Terms and Conditions and any applicable Subscription Agreement. Physical Review®, Physical Review Letters®, Reviews of Modern Physics®, and Physical Review Special Topics® are trademarks of the American Physical Society.