This website uses cookies to give you the best user experience. If you continue without changing your settings we'll assume you are happy to receive all RSC cookies. You can change your cookie settings by navigating to our <u>Privacy and Cookies</u> page and following the instructions. These instructions are also obtainable from the privacy link at the bottom of any RSC page.

RSCPublishing

GUNMA UNIVERSITY
<u>RSC | ChemSpider</u> | Feedback
Login | Register

- Journals
- Books
- <u>Alerts</u>
- Others
- <u>Help</u>

Full Text Enter your search phrase クエリ送信 Advanced Search Home > Journals > Dalton Transactions > Evolution of orientatio... For Authors & Referees | For Librarians | For Members Paranaactions

Dalton Transactions

Issue 31,
2011The international journal for inorganic, organometallic and bioinorganic
chemistry
Impact Factor 3.838 48 Issues per Year Indexed in MEDLINE

tor 3.838 48 Issues per Year Indexed in MEDLINI

Previous Article | <u>Next</u> Article

Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline ianthanum-doped bismuth titanate ferroelectric films by chemical solution deposition

<u>Jinzhong Zhang</u>,^a <u>Xiangui Chen</u>,^a <u>Kai Jiang</u>,^a <u>Yude Shen</u>,^a <u>Yawei Li</u>,^a <u>Zhigao Hu</u>*^a and <u>Junhao Chu</u>^a Show Affiliations *Dalton Trans.*, 2011, **40**, 7967-7975

DOI: 10.1039/C1DT10443H Received 16 Mar 2011, Accepted 17 May 2011 First published online 08 Jul 2011

- 🚺 PDF
- 📓 Rich HTML
- 🖢 <u>Buy PDF (£36)</u>

Paper

クエリ

送信

uest Permissions

?) BibTex

1

Please choose one of the options provided in the log in section to gain access to this content:

	Citta Dy	Compounds	Keluteu Conten		T
erroelectric ms with the ibstrates by ientation, si the BLT fill of spectrosis ms are poly imposition, ughnesses about 59 c e shifted to notolumines th the La co icancy defe e measured yer/BLT/Si) is been suc rroelectric E early increa- irmised that pecially for	lanthanum (La)- composition rar chemical soluti urface morpholo ns have been in copic ellipsomet crystalline and e the (100)-orient: slightly increase m ⁻¹ is unchange wards higher fre scence spectra so omposition, exce cts. The optical d ellipsometric s in the photon el ccessfully applie 3LT films. Moreo ases from 3.610 t the phenomena the conduction	substituted bismutting of $0 \le x \le 1$ have on deposition. The gy, phonon modes vestigated by micro- ry at room tempera- exhibit the pure per- ation degree can be e from 6.5 to 8.3 nm d while the B _{1g} and quency by about 3 show that the intense of the Bi ₃ LaTi ₃ (constants of the Bl bectra with a four-part of and reasonably do ver, the film packing ± 0.066 to 3.758 \pm a are mainly ascrib- band, which is performed to the substantion of the part of the big the substantion of the part of the substantion of the substantion of the substantion of the substantion of the substantion of the substantion of the substantion of the substantion of the substantion of the substanting substantion of the substantion of th	h titanate (Bi _{4-x} La _x Ti ₃ O, /e been directly deposi La substitution effects b, emission bands and oscopy, Raman scatte ature. X-Ray diffraction ovskite phase structure e enhanced and the ro n. It was found that the I A ₁₉ [Ti] phonon modes 6.6 and 8.4 cm ⁻¹ , resp sity of the peak located D ₁₂ film, due to the sma LT films have been uni base layered model (a B-4.77 eV. The Adachi lescribes the optical re ng density decreases w 0.068 eV with increas ed to the variations of turbed by the La doping	¹² , BLT) nanocrystalline ted on n-type Si (100) on the preferred electronic band structur ring, photoluminescence analysis shows that the e. With increasing La ot-mean-square Raman-active mode A e at about 648 and 853 ectively. I at about 2.3 eV increat allest grain size and oxy quely extracted by fittin dielectric function mod sponse behavior of the while the optical band gai ing La composition. It is the electronic structure g.	res res e Ag[Bi] f cm ⁻¹ s ases ygen lel ap e ap e f cm ⁻¹ s e f f ases ygen [a e f f f ases ygen [f f f ases ygen [f f f f f ases ygen [f f f f f f f f f f f f f
		BL TO 00 I 500 mm	BLT0.00 BLT0.25 BLT0.50 BLT0.75 BLT1.00 0 2.5 3.0 3.5 energy (eV)	0000 3000 (الم ⁻¹ م ((

🕖 Dalton **Transactions** brmation Point

out this Journal ple and Contacts mit to this Journal torial Board hors and Referees scription Information low Journal rch Articles By

- Jinzhong Zhang
- Xiangui Chen
- Kai Jiang
- Yude Shen
- Yawei Li
- Zhigao Hu
- Junhao Chu

ated Patents

w patents from eChem

Log in (Subscriber Access)

Login via Athens or your home institution

Login with your subscriber username and password Username*

Password*

Ask your librarian to arrange site-wide access.

Also from the RSC

Advertisements

© Royal Society of Chemistry 2013 <u>Terms & Conditions</u>|Privacy and Cookies |Accessibility|ACAP Enabled クエリ送信